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Convex Optimization

A set D is convex if for every x , y ∈ D, 0 ≤ λ ≤ 1, we have

λx + (1− λ)y ∈ D.

A function f : D → R is convex if D is convex and for every x , y ∈ D,
0 ≤ λ ≤ 1,

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

If ∇f (x∗) = 0, then x∗ is the only global/local minima of f .
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Examples of Convex Functions

Most classical machine learning models (e.g. linear regression, logistic
regression, SVM, kernel methods)

Most loss functions (e.g. mean squared loss, cross-entropy loss)

Neural networks (unfortunately they are not convex, but somehow
many convex optimization algorithms still work; this is another
interesting field of research)

Yan Pan (Carnegie Mellon University) Zeroth-Order Online Convex Optimization April 27, 2023 3 / 25



(Stochastic) Gradient Descent

At every timestep t, update

xt+1 = xt − ηgt .

In gradient descent, gt = ∇f (xt).

In stochastic gradient descent, gt is a random vector, such that
E[gt ] = ∇f (xt), and E[‖gt‖2] ≤ G for some constant G .

If the constraint set D is a closed and bounded convex set, we can do
projected gradient descent, where we project xt+1 back to D if it is
“out of bound”,

xt+1 = PD(xt − ηgt).
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Convergence of SGD

It is not hard to show that gradient descent converges.

We need to assume that f is convex and ‖∇2f (x)‖ ≤ L
(“L-smooth”).
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Convergence of Gradient Descent

If f is convex, then

f (y) ≥ f (x) + 〈∇f (x), y − x〉.

Plugging into y = x∗, x = xt , we have

f (x∗) ≥ f (xt) + 〈∇f (xt), x
∗ − xt〉

= f (xt) +
1

η
〈xt − xt+1, x

∗ − xt〉.

By “law of cosines”, we get an interesting formula

f (xt) ≤ f (x∗) +
1

2η

(
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2 + ‖xt − xt+1‖2

)
≤ f (x∗) +

1

2η

(
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2 + η2‖gt‖2

)
.
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Convergence of Gradient Descent

Then, summing up from t = 1, . . . ,T , we have

1

T

T∑
t=1

f (xt) ≤ f (x∗) +
1

2η

(
‖x∗ − x0‖2 + η2

T∑
t=1

‖gt‖2
)

We just need to bound ‖gt‖2!
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Convergence of Gradient Descent

For gradient descent, if f is L-smooth, then by Taylor’s theorem,

f (y) ≤ f (x) + 〈∇f (x), y − x〉+
L

2
‖y − x‖2.

Plugging into y = xt+1 and x = xt , we have

f (xt+1) ≤ f (xt) + 〈∇f (xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

≤ f (xt)− η‖∇f (xt)‖2 +
L

2
η2‖∇f (xt)‖2.

Choosing η = 1
L , we have

‖∇f (xt)‖2 ≤
2

η
(f (xt)− f (xt+1))

so the sum is O(1/η).

The average loss is at most O(1/T ).
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Convergence Rate of Gradient Descent

For SGD, we just bound ‖gt‖2 by the variance, so sum is O(T ).

We can pick η = O(1/
√
T ) in this case, so the average loss is at

most O(1/
√
T ).
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Online Convex Optimization

Instead of a single objective function, a sequence of functions
f1, f2, . . . is given.

Need to pick a point xt before knowing anything about ft .

Try to minimize the regret compared to the minima x∗ of the sum

RT :=
T∑
t=1

ft(xt)− min
x∗∈D

T∑
t=1

ft(x
∗).

Goal is to make limT→∞
RT
T → 0, so we have vanishing average

regret.
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Examples of Online Optimization

(Mini-batch) stochastic gradient descent: At every epoch, sample
a batch from the dataset, and optimize the loss on the batch. This is
the most widely used optimization algorithm in machine learning.

Non-convex optimization: In empirical risk minimization, to
minimize f (w) =

∑N
i=1 `(h(w , xi ), yi ), with the model h non-convex

and loss ` convex, we can equivalently solve the following online
convex optimization problem

ft(w) =
1

N

N∑
i=1

`(h(wt , xi ) + 〈∇wh(wt , xi ),w − wt〉, yi ).
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Examples of Online Optimization

Multi-armed bandits: There are d machines and you can pick which
one to play. After you play, you can observe the full reward vector `t .
We can maintain a probability distribution pt and define
ft(pt) = −〈`t , pt〉. Then, we can optimize using projected gradient
descent.

Reinforcement learning: The environment changes when the player
makes an action. The objective function (“value function”) is
dependent on the current state and the player’s action.
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Gradient Descent Still Works

This problem seems hard, since we don’t know anything about
functions in the future.

Typically, there is no guarantee that the functions are similar.

Surprisingly, gradient descent can still minimize the regret, even if we
use a different function for every update step!

This is because the baseline is the minimizer of the sum
minx∗∈D

∑T
t=1 ft(x

∗), and not the minimizers of each function.
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Proof of Gradient Descent Convergence

The proof is pretty much the same as the stochastic gradient case.

We assume ft to be Lipschitz, that is for every x , y ∈ D,

|f (x)− f (y)| ≤ L‖x − y‖

which bounds the gradient ‖∇f (x)‖ ≤ L.

The regret is O(
√
T ), so the average regret is vanishing (Zinkevich,

2003).
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Zeroth-Order Online Convex Optimization

At every timestep t, instead of ∇ft(xt), we can only observe ft(xt).

This is natural in scenarios where gradient is hard to obtain, or the
objective function is not differentiable.

Can we still use our favorite gradient-based methods?
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Revisiting an Example

A company wants to decide how much money to spend on advertising
their products in d channels.

The objective function is the profit, which is changing rapidly over
time, and in general there is no guarantee about how it will change.

The company definitely cannot know anything about the future, and
they need to choose the allocations before observing the profit.

The gradient is hard to obtain in this case — they don’t know what
the objective function is. They only know their profits.
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An Offline Solution

We may try to approximate ∇f (x) by

〈∇f (x), u〉 = lim
δ→0

f (x + δu)− f (x)

δ
.

Pick a sufficiently small δ, so when f is Lipschitz, this will be a good
approximation of the partial derivatives.

In Rd , we need to approximate d times to estimate the gradient.

But in the online setting, we can only observe the value of ft at one
point! Once we observe the value, the objective function changes to
ft+1, and we cannot get more information about ft .
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Solution of Flaxman et al. (2005)

What if we can sample a unit random vector?

Key idea: Use Stoke’s theorem to approximate the stochastic
gradient.

∇f (x) ≈ E
u∼S

[
d

δ
f (x + δu)u

]
= E

u∼S

[
d

δ
(f (x + δu)− f (x))u

]

We only need the function value at one point f (x + δv) to
approximate the stochastic gradient!
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Solution of Flaxman et al. (2005)

Formally, let S be the unit sphere in Rd , and B be the unit ball in Rd .

By Stoke’s theorem

∇
∫
δB

f (x + v) dv =

∫
δS

f (x + u)
u

‖u‖
du.

Then, since vol(B) = d vol(S), we have

E
u∼S

[
d

δ
f (x + δu)u

]
= ∇f̂ (x)

where
f̂ (x) = E

v∼B
[f (x + δv)].
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Solution of Flaxman et al. (2005)

If we sample v ∼ S , then d
δ f (x + δv)v is a stochastic gradient of f̂ at

x , which we can use to do stochastic gradient descent.

f̂ is an “average” of f in a neighborhood of radius δ, so when δ is
small and f is Lipschitz, the difference between f and f̂ is small.

Algorithm: At every timestep, sample ut ∼ S, and update using

xt+1 = PD

(
xt − η

δ

d
ft(xt + δut)ut

)
.
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Bounding the Regret

We can bound ‖gt‖2 ≤ d
δ maxx∈D|ft(x)|.

The standard online gradient descent proof gives us a bound on the

regret of f̂t as O(
√
T
δ ).

However, this is a bound on the regret of f̂t ! We know that if each ft
is Lipschitz, then there is an additional error of

T∑
t=1

ft(xt)−
T∑
t=1

f̂t(xt) ≤ O(δT )

Choosing δ = O(T−1/4) gives us a regret of O(T 3/4).
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Extensions of the Setting

There are various extensions of this “bandit” setting in online convex
optimization.

Better algorithms exist if additional assumptions are made.
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Two-Point Estimates (Agarwal and Dekel, 2010)

When we have two points as feedback, similarly we can estimate the
gradient by

∇f (x) ≈ E
u∼S

[
d

2δ
(f (x + δu)− f (x − δu))u

]
.

When f is Lipschitz, |f (x + δu)− f (x − δu)| ≤ 2δ, so we removed the
δ−1 factor in the bound of ‖gt‖!

Then, we can choose δ = O( 1√
T

), so regret is bounded by O(
√
T ),

which asymptotically is as good as when we have the gradient!
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Smooth Objective Functions (Saha and Tewari, 2011)

What if we sample from other than a sphere?

For a positive semidefinite matrix A, we can also approximate by

∇f̂ (x) =
d

δ
f (x + δAu)A−1u

where u ∼ S and
f̂ (x) = E

u∼B
[f (x + δAu)].

Saha and Tewari (2011) improve the regret to O(T 2/3) for smooth
functions by finding a sequence of At from a self-concordant barrier
function using an interior point method.
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Application in Concave Games (Bravo et al., 2018)

Suppose we have a repeated game, where each players have a
concave utility function ui .

The players can only optimize their action xi , but they cannot control
the action of other players x−i .

We can define ft(xt,i ) = ui (xt,i , xt,−i ), then this becomes an online
optimization problem.

The individual players can use the algorithm by Flaxman et al. (2005)
if they only receive their utility as feedback.

Bravo et al. (2018) shows that the game converges to a Nash
equilibrium if the players use this strategy.
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