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1 Introduction

In online machine learning, the objective function is changing over time, and online convex

optimization is needed to find the optimal solution for online learning problems (Shalev-Shwartz

et al., 2012). While stochastic gradient methods, such as stochastic gradient descent, can be

applied on such learning problems, in many applications such as online advertising, gradient-

based algorithms are no longer feasible since gradient information is hard to obtain. We refer

such setting to “zeroth-order” or “bandit” online convex optimization, where we optimize

without gradient information. Then, optimization is particularly hard in the online setting,

since only limited information can be queried for each function.

In this project, we review important algorithms in zeroth-order online convex optimization,

where they perform gradient descent without any gradient information. The setting is closedly

connected to the online learning problem in class, but is extended to the bandit setting. We

provide an overview of the online convex optimization framework, where the setting will follow

the framework proposed by Zinkevich (2003). Then, we prove how stochastic projected gradient

descent can achieve O(
√
T ) regret in the online setting, which is the foundation of most online

optimization algorithms. Then, we analyze the algorithm of Flaxman et al. (2005), where

Stoke’s theorem is used to approximate the gradient with function value at one point. We prove

its regret of O(T 3/4) using the stochastic projected gradient descent framework. Furthermore,

we show how similar ideas can be applied to slightly different settings with modifications,

leading to more optimal algorithms in the two-point feedback setting (Agarwal and Dekel,

2010) and smooth setting (Saha and Tewari, 2011). In the end, we also discuss an application

of the algorithm in game theory described by Bravo et al. (2018).

2 Online Convex Optimization

2.1 Convex Optimization

We start with the definitions of convex sets and convex functions. A set D is convex if for

every x, y ∈ D, 0 ≤ λ ≤ 1, we have λx+ (1− λ)y ∈ D. A function f : D → R is convex if D is
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convex and for every x, y ∈ D, 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

In general, we can efficiently optimize convex functions with a variety of first-order (gradient-

based) algorithms such as gradient descent, Adagrad (Duchi et al., 2011), Adam (Kingma and

Ba, 2015).

In online optimization, the main difference is that instead of a fixed function f , we now

have a sequence of functions f1, . . . , fT . At every timestep t, the player is asked to choose a

point xt before knowing any information about ft, and then ft(xt) and/or ∇ft(xt) is revealed

to the player. The player may use the information to decide on xt+1. This can be thought as

an repeated game between the player who chooses xt and an adversarial who chooses ft. In

general, there is no guarantee about the functions ft, besides being convex, and Lipschitz or

smooth. The goal of online optimization is to minimize the regret of the player, defined as

RT :=

T∑
t=1

ft(xt)− min
x∗∈D

T∑
t=1

ft(x
∗). (1)

Although the game seems hard, since the functions can be arbitrary, most classical convex

optimization algorithms, such as stochastic gradient descent, works well on the problem (Zinke-

vich, 2003). The key is that in Equation (1), the regret is defined as the difference between the

sum of losses and the minimizer of the sum of the functions, instead of the sum of minimizer

of each function. When the functions ft are very arbitrary, such that they do not have a

good common minimizer x∗, then the baseline is already very bad, so we would not be too

worse compared to the baseline. When the functions are close to each other with a common

minimizer x∗, then most gradients will be pointing to x∗, in which case gradient information

will be useful. In the next section, we will see how online SGD achieves a regret of O(
√
T ).

2.2 Convergence of Online SGD

We provide the algorithm for online projected stochastic gradient descent in Algorithm 1. We

show the convergence rate of Algorithm 1 in Theorem 2.1.

Algorithm 1 Projected stochastic gradient descent algorithm for online convex optimiza-
tion (Zinkevich, 2003).

Require: Initialize x1 ∈ D
for t← 1, . . . , T do

gt ← random vector with E[gt] = ∇ft(xt)
xt+1 ← PD(xt − ηgt)

end for
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Theorem 2.1. Let D ⊆ Rd be a convex set and let f1, . . . , fT : D → R be convex functions.

Suppose ‖gt‖ ≤ G for some constant G > 0 in Algorithm 1. Then, if we run Algorithm 1 with

η = R
G
√
T

, the expected regret is upper bounded by

RT ≤ RG
√
T .

Proof. By the lower linear bound (Boyd and Vandenberghe, 2004) of convex functions,

ft(xt)− ft(x∗) ≤ 〈∇ft(xt), xt − x∗〉

= E[〈gt, xt − x∗〉].

Then, since D is convex, for any x ∈ Rd, y ∈ D, ‖PD(x)− y‖ ≤ ‖x− y‖. Then,

‖xt+1 − x∗‖2 = ‖PD(xt − ηgt)− x∗‖2

≤ ‖xt − ηgt − x∗‖2

= ‖xt − x∗‖2 + η2‖gt‖2 − 2η〈gt, xt − x∗〉

≤ ‖xt − x∗‖2 + η2G2 + 2η(ft(x
∗)− ft(xt)).

Rearranging terms we get

ft(xt)− ft(x∗) ≤
1

2η

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2 + η2G2

)
.

Then, summing up and taking expectation, we have

T∑
t=1

E[ft(xt)]−
T∑
t=1

ft(x
∗) ≤ 1

2η
(‖x0 − x∗‖2 − ‖xT+1 − x∗‖2 + η2G2T )

≤ ‖x0 − x
∗‖2

2η
+
ηG2T

2

≤ R2

2η
+
ηG2T

2
.

Let η = R
G
√
T

, we have RT ≤ RG
√
T .

3 Zeroth-Order Online Convex Optimization

In zeroth-order online convex optimization, access to the gradient is no longer feasible. At every

timestep, only the function value ft(xt) is observed, and we need to pick xt+1 immediately

without any further information. In the offline setting, the problem is not particularly hard,

since there are various ways to approximate the geometry of the function. For example, we

can approximate the partial derivative of f at x by

〈∇f(x), ei〉 = lim
δ→0

f(x+ δei)− f(x)

δ
≈ f(x+ δei)− f(x)

δ
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for some sufficiently small delta. However, in Rd, we would need d estimates to obtain an

estimate of the full gradient, but this is impossible in online optimization, since once we

observed ft(xt), the function changes to ft+1, and we can no longer obtain any information

about ft.

Flaxman et al. (2005) provides a randomized solution to approximate the stochastic gra-

dient of the objective function with only one point feedback. The key is to use Stoke’s theorem

to formulate the relationship between the gradient and function value over distributions on

the unit ball and sphere. Formally, let S be the unit sphere and B be the unit closed ball, by

Stoke’s theorem, we have

∇
∫
δB
f(x+ v) dv =

∫
δS
f(x+ u)

u

‖u‖
du

Then, if we define f̂(xt) = Eu∼B[f(x+ δu)], we have

∇f̂(xt) = E
u∼S

[
d

δ
f(x+ δu)u

]
. (2)

When f is Lipschitz, f̂ is close to f since it is the “average” of f in a small neighborhood of

f , so if we optimize f̂ , we also approximately optimize f . This leads to Algorithm 2.

Algorithm 2 Algorithm for zeroth-order online convex optimization with O(T 3/4) regret
by Flaxman et al. (2005).

for t← 1, . . . , T do
Draw ut ∼ S uniformly at random
gt ← d

δ ft(xt + δut)ut
xt+1 ← PD(xt − ηgt)

end for

We make the following assumptions. In the online convex optimization setting, we have

a convex and compact constraint set D ⊆ Rd, with rB ⊆ D ⊆ RB. We are given a sequence

of functions f1, . . . , fT : D → R, which are all convex and L-Lipschitz. In addition, each ft is

bounded by ‖ft‖∞ := supx∈D(x) ≤M . If the assumptions are satisfied, we have Theorem 3.1

that establishes the convergence rate for Algorithm 2.

Theorem 3.1. If the assumptions hold, then the expected regret of Algorithm 2 is upper

bounded by

RT ≤ 2T 3/4
√

(2 + 1/r)RMdL = O(T 3/4).

Lemma 3.2. Let f̂t(xt) = Eut∼B[ft(xt + δut)], then E[gt] = ∇f̂(xt).
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Proof. Using the fact that vol(δB) = δ
d vol(δS), we have

E[gt] =
1

vol(δS)

d

δ

∫
δS
ft(xt + u)

u

‖u‖
du

=
1

vol(δB)
∇
∫
δB
ft(xt + u) du

= ∇f̂t(xt).

Lemma 3.3. The optimum in (1− δ/r)D satisfy

min
x∗∈(1−δ/r)D

T∑
t=1

ft(x
∗) ≤ δLT

r
+ min
x∗∈D

T∑
t=1

ft(x
∗).

Proof. Since ft is L-Lipschitz,
∑T

t=1 ft is LT -Lipschitz, so let

x∗ := arg min
x∈D

T∑
t=1

ft(x),

we have

min
x∗∈(1−δ/r)D

T∑
t=1

ft(x
∗) ≤

T∑
t=1

ft(P(1−δ/r)D(x∗))

≤
T∑
t=1

ft(x
∗) +

T∑
t=1

|ft(P(1−δ/r)D(x∗))− ft(x∗)|

≤
T∑
t=1

ft(x
∗) + TL‖P(1−δ/r)D(x∗)− x∗‖

≤
T∑
t=1

ft(x
∗) +

δLT

r
.

Lemma 3.4. For any point x ∈ (1− δ/r)D, x+ δB ⊆ D.

Proof. This follows from

(1− δ/r)D + δB ⊆ (1− δ/r)D + (δ/r)D ⊆ D.

Lemma 3.5. For any x ∈ D, |f̂t(x)− ft(x)| ≤ δL.
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Proof. Since ft is L-Lipschitz, we have

|f̂t(x)− ft(x)| =
∣∣∣∣ 1

vol(δB)

∫
δB
f(x+ u) du− f(x)

∣∣∣∣
≤ 1

vol(δB)

∫
δB
|f(x+ u)− f(x)| du

≤ 1

vol(δB)

∫
δB
L‖u‖ du

≤ 1

vol(δB)

∫
δB
δL du

≤ δL.

Proof of Theorem 3.1. We follow the proof of the general online gradient descent. We first

bound ‖gt‖ using the upper bound of |ft|

‖gt‖ =

∥∥∥∥dδ ft(xt + δut)ut

∥∥∥∥ ≤ Md

δ
.

Let G := Md
δ . By Theorem 2.1, we have the regret of {f̂t} is bounded by

R̂T ≤ RG
√
T =

RMd
√
T

δ
.

Then by Lemma 3.5, we have

RT =
T∑
t=1

ft(xt)− min
x∗∈D

T∑
t=1

ft(x
∗)

≤
T∑
t=1

ft(xt)− min
x∗∈D

T∑
t=1

f̂t(x
∗) + δLT

≤
T∑
t=1

ft(xt)− min
x∗∈(1−δ/r)D

T∑
t=1

f̂t(x
∗) + (1 + 1/r)δLT

= R̂T +

T∑
t=1

|f̂t(xt)− ft(xt)|+ (1 + 1/r)δLT

≤ R̂T + (2 + 1/r)δLT

≤ RMd
√
T

δ
+ (2 + 1/r)δLT.

Choosing δ = T−1/4
√

RMd
(2+1/r)L , we have

RT ≤ 2T 3/4
√

(2 + 1/r)RMdL = O(T 3/4).
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3.1 Two-Point Estimates

One potential problem with the bound in Theorem 3.1 is that it is dependent on the upper

bound for ‖ft‖∞. When the function values are too large, the variance of the stochastic gradi-

ent will be large, which affects the performance of the algorithm. In particular, an adversarial

could simply add a constant term to each function to slow down the convergence of the algo-

rithm, without changing the regret objective. Such assumption is not realistic and is typically

unnecessary in general convex optimization problems.

Agarwal and Dekel (2010) shows that when we have two-point estimates of the gradient,

we can improve the estimation of the stochastic gradient and remove the dependence on ‖ft‖∞.

The key idea is that we can approximate the gradient by

∇f(x) ≈ E
u∼S

[
d

2δ
(f(x+ δu)− f(x− δu))u

]
.

Algorithm 3 Algorithm for zeroth-order online convex optimization with two point feedback,
with O(

√
T ) regret by Agarwal and Dekel (2010).

for t← 1, . . . , T do
Draw ut ∼ S uniformly at random
gt ← d

2δ (ft(xt + δut)− ft(xt − δut))ut
xt+1 ← PD(xt − ηgt)

end for

Theorem 3.6. If the assumptions hold, with infinitesimal δ, the expected regret of Algorithm 3

is upper bounded by

RT ≤ RLd
√
T .

In particular, with δ = O( 1√
T

), we have RT = O(
√
T ).

Proof. We bound ‖gt‖ by

‖gt‖ =

∥∥∥∥ d2δ (ft(xt + δu)− ft(xt − δu))u

∥∥∥∥
≤ d

2δ
|ft(xt + δu)− ft(xt − δu)|

≤ d

2δ
L‖2δu‖

= Ld.

Then, let G := Ld, by Theorem 2.1, we have the regret of {f̂t} is bounded by

R̂T ≤ RG
√
T = RLd

√
T .
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Then, similar to the proof of Theorem 3.1, we have

RT ≤ R̂T + (2 + 1/r)δLT

≤ RLd
√
T + (2 + 1/r)δLT.

Choosing δ → 0+, we have

RT ≤ RLd
√
T .

In particular, it suffices to choose δ = O( 1√
T

) to get RT = O(
√
T ).

When we have two point feedback, we can see that we can get nearly as good as when we

have the full gradient, in which case we achieve a regret of at most RL
√
T . There is only an

additional multiplier of d and an extra term that is negligible if we choose sufficiently small δ.

3.2 Smooth Objective Function

The gradient estimation given by Flaxman et al. (2005) is a generic idea that can be used to

turn first-order online convex optimization algorithms to zeroth-order algorithms. Similar ideas

can be applied to other convex optimization algorithms. Saha and Tewari (2011) shows how

the algorithm can be applied to an interior point method proposed by Abernethy et al. (2008);

Abernethy and Rakhlin (2009). Specifically, in the original algorithm, a vector is sampled from

the unit sphere, while in the algorithm by Saha and Tewari (2011), a ν-self-concordant barrier

function R is used and the vector is sampled from an ellipsoid based on R. The algorithm is

described in Algorithm 4.

Algorithm 4 Zeroth-order online convex optimization algorithm for smooth functions by Saha
and Tewari (2011).

Require: R is a ν-self-concordant barrier function for D
for t← 1, . . . , T do

At ←
√

(∇2R(xt))−1

Draw ut ∼ S uniformly at random
gt ← d

δ ft(xt + δAtut)A
−1
t ut

xt+1 ← arg minx∈D η
∑t

s=1〈gs, x〉+R(x)
end for

We need an additional assumption that f is L-smooth.

Definition 3.7. A convex function f : D → R is L-smooth if for all x, y ∈ D,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2.

Lemma 3.8. Let f̂t(xt) = Eu∼B[ft(xt + δAtu)], then E[gt] = ∇f̂(xt).
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Proof. We define Ft(x) := ft(Atx), which allows us to apply the chain rule.

E[gt] = E
u∼S

[
d

δ
ft(xt + δAtu)A−1t u

]
= A−1t E

u∼S

[
d

δ
ft(xt + δAtu)u

]
= A−1t E

u∼S

[
d

δ
Ft(A

−1
t xt + δu)u

]
= A−1t F̂t(A

−1
t xt)

= A−1t Atf̂t(xt)

= f̂t(xt).

Theorem 3.9. Assume that f1, . . . , fT : D → R are L-smooth, with ‖ft‖∞ ≤ M , then run-

ning Algorithm 4 with appropriate choices of η, δ, the expected regret is upper bounded by

Rt ≤ 3(Lν log T )1/3(MdR)2/3T 2/3 +

(
2M

R
+RL

)√
T = Õ(T 2/3).

We will not show the proof of the theorem here, and will refer the reader to the original

paper by Saha and Tewari (2011). But notice that Õ(T 2/3) is a significant improvement

compared to the O(T 3/4) bound. It is a question that whether we can use this idea to turn

other first-order online convex optimization algorithm into bandit algorithms and achieve better

regret bound.

3.3 Application in Game Theory

Multi-person repeated concave games can be thought as a special case for online learning. We

assume that each player has a fixed concave utility function ui : A → R and the set of all

possible actions A =
∏N
i=1Ai is convex. Then, notice that while the utility functions are fixed,

the players can only control their own actions, but not the actions of other players. Then, for

each player i, we can define

ft,i(xt,i) = ui(xt,i, xt,−i)

which is concave. Hence, the players can use the online learning framework as a strategy to

find actions. When the game is unknown to the player, it is a zeroth-order online optimization

problem, since gradient information is not available. Then, the algorithm by Flaxman et al.

(2005) can be applied to solve for future actions. Bravo et al. (2018) shows that for concave

N -person monotone games, if each player chooses his or her action according to the algorithm

by Flaxman et al. (2005), the game would converge to a Nash equilibrium.
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4 Discussion

The bandit optimization is a topic that I wanted to look into since I learned online optimization

in the convex optimization course at CMU. I was surprised that there can be such a simple

way of using first-order algorithms in the zeroth-order setting. The proof was also simple

and elegant and can be summarized in a few pages. While I was looking for examples of

online learning, I realized that many natural applications of online learning does not involve

the definition of a differentiable model like in machine learning, and more of them are like

“bandits.” As a result, the bandit optimization framework can be applied to a variety of such

problems. I was also excited to see that there is a connection between bandit optimization

and game theory. I realized that online learning is a very generic and powerful setting, and

it would always be a great research idea to try the online learning framework when studying

sequential decision making problems.

5 Conclusion

In conclusion, this report provides a comprehensive review of important algorithms in zeroth-

order online convex optimization. We started with an overview of the online convex opti-

mization framework and demonstrated how stochastic projected gradient descent can achieve

O(
√
T ) regret in the online setting. We then analyzed the algorithm of Flaxman et al. (2005),

which approximates the gradient with function value at one point using Stoke’s theorem and

proved its expected regret of O(T 3/4). We also explored how similar ideas can be applied to

slightly different settings, leading to more optimal algorithms in the two-point feedback and

smooth settings. Finally, we discussed an application of the algorithm in game theory described

by Bravo et al. (2018). This report highlights the significance of online convex optimization in

machine learning and provides insights into various algorithms that can be used to optimize

online learning problems in the absence of gradient information.
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